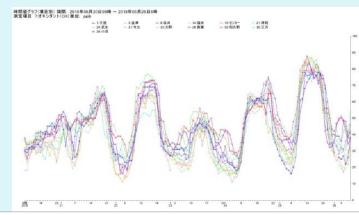
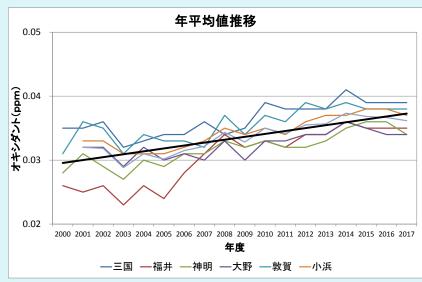
## 福井県における光化学オキシダント 高濃度予測手法の構築

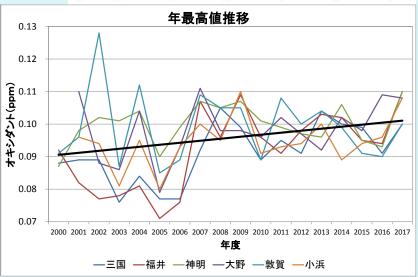
(平成27年~30年)

環境部 大気・化学物質研究G 〇安川聡浩、西澤憲彰

#### 光化学オキシダントとは?


- ・主に工場や自動車などから排出される、窒素酸化物や炭化水素が、太陽の紫外線により、光化学 反応を起こし生成される
- •こうして生成された、オゾンやPAN(パー オキシアセチルナイトレート)などの酸化物の総称 (以降、「Ox」と表記)





主成分のオゾンの酸化作用により、目や喉などの粘膜への刺激や植物の生育に影響がある

### 県内の光化学オキシダントの状況

・経年変化は、増加傾向(全国と同様)



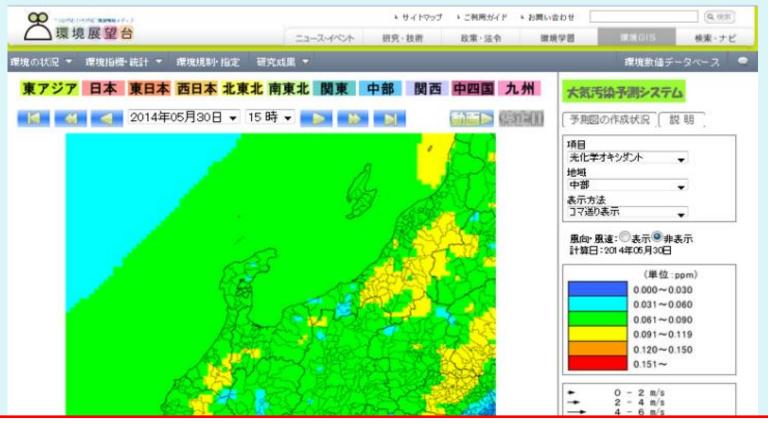




### 光化学オキシダント高濃度予測の必要性

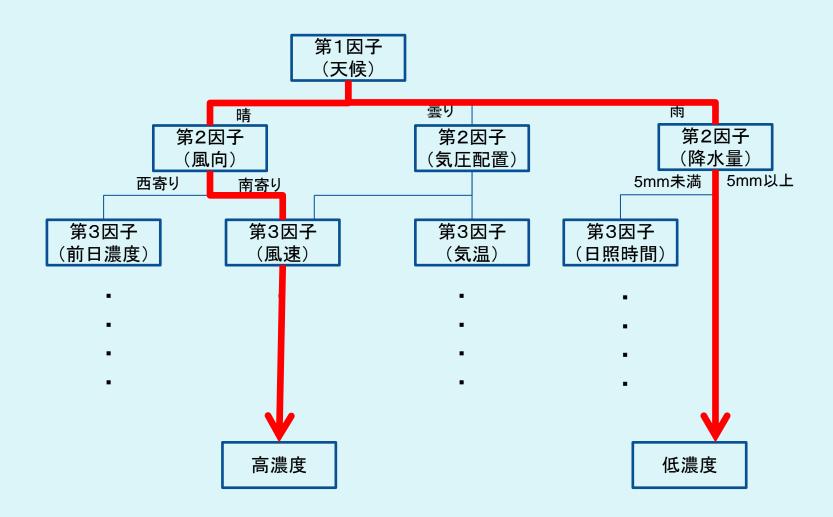
大気汚染防止法 第23条(緊急時の措置)により、 Ox濃度120ppb以上継続で注意報発令を義務付け

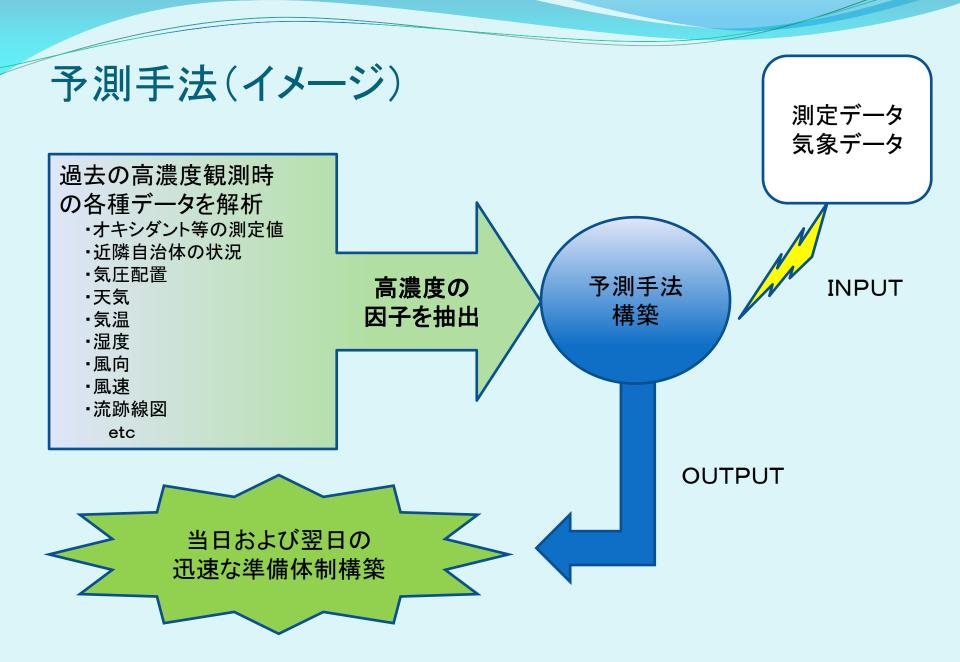



Ox濃度90ppb以上で予告

- ・準備体制の構築(関係機関、市町)
- ・担当者の不在や急激な濃度上昇で準備体制の 構築が間に合わないおそれ




迅速な準備体制の構築のため高濃度予測が必要


### オキシダント濃度予測の取り組み



実際は嶺北から嶺南東部の広い地域で90ppb以上を 観測

### 予測手法(イメージ)





#### Ox高濃度の因子の抽出方法

全県的な監視体制が整備された、平成14年度以降の データのうち、90ppb以上の高濃度となった日および その前日について解析を実施。

#### <解析対象項目>

- ・ポテンシャルオゾン濃度(以降、POと表記)
- ・天気・気圧配置・風向風速・気温 など
- (※気象データについては、天気予報で入手可能な項目に限定)
- ・ 上記項目を用いて、重回帰分析を行い、日最高Ox濃度との相関が強い因子を抽出する。

### Ox高濃度の因子(例1)

• 天気予報(天候・風向・風速)

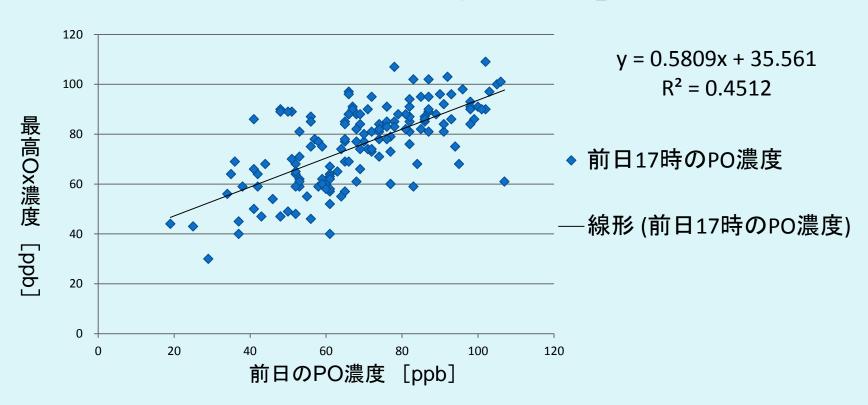
15-

P 天気 10m/s 以上 35m/s 30 気温℃ m/s 20 0 15-0~2 m/s All rights reserved. Copyright @ Japan Meteorological Agency 風凡例 P 天気 10m/s 以上 福井県嶺南 【気温:敦賀】 35m/s 30-気 温 25-℃ m/s 20-0

All rights reserved. Copyright @ Japan Meteorological Agency

風凡例

0~2 m/s


### Ox高濃度の因子(例2)

• 天気予報(最高気温、最低気温との差)

| 嶺北                  | 地域時系列予報へ                                            | 降水                               | 〈確率                     | 気温予報 |      |                            |  |
|---------------------|-----------------------------------------------------|----------------------------------|-------------------------|------|------|----------------------------|--|
| 今日23日<br>今/@        | 北の風 海上 では はじめ 北の風 やや強く 雨昼前 からくもり 波 1メートル 後 0.5メートル  | 06-12                            | —%<br>50%<br>20%<br>10% | 福井大野 |      | 日中の最高<br>27度<br>27度<br>27度 |  |
| 明日24日               | 南の風 くもり 夕方 から                                       | , 00-06                          | 0%                      |      |      | 日中の最高                      |  |
|                     | 雨                                                   | 06-12                            | 10%                     | 福井   | 20度  | 29度                        |  |
|                     | 波 0.5メートル                                           | 12-18<br>18-24                   | 60%<br>80%              | 入野   | 19度  | 28度                        |  |
| 明後日25日              |                                                     | 週間天                              | 気子報へ                    |      |      |                            |  |
| 演南                  | 降水                                                  | (確率                              | 気温予報                    |      |      |                            |  |
| 今日23日<br><b>今</b> / | 北の風 海上 では はじめ 北の風 やや強く 雨<br>昼過ぎ から くもり<br>波 O.5メートル | 00-06<br>06-12<br>12-18<br>18-24 | —%<br>70%<br>20%<br>10% | 敦賀   |      | 日中の最高<br>26度               |  |
|                     | 南の風 くもり 夕方 から                                       | 00-06                            | 0%                      | 4    | 朝の最低 | 日中の最高                      |  |
| 明日24日               | 雨 波 0.5メートル                                         | 06-12<br>12-18<br>18-24          | 10%<br>60%<br>90%       | 敦賀   | 21度  | 28度                        |  |
|                     |                                                     | CT-2770-CCC-0-474-0-1            |                         |      |      |                            |  |

### Ox高濃度の因子(例3)

•「前日のポテンシャルオゾン濃度(PO)」



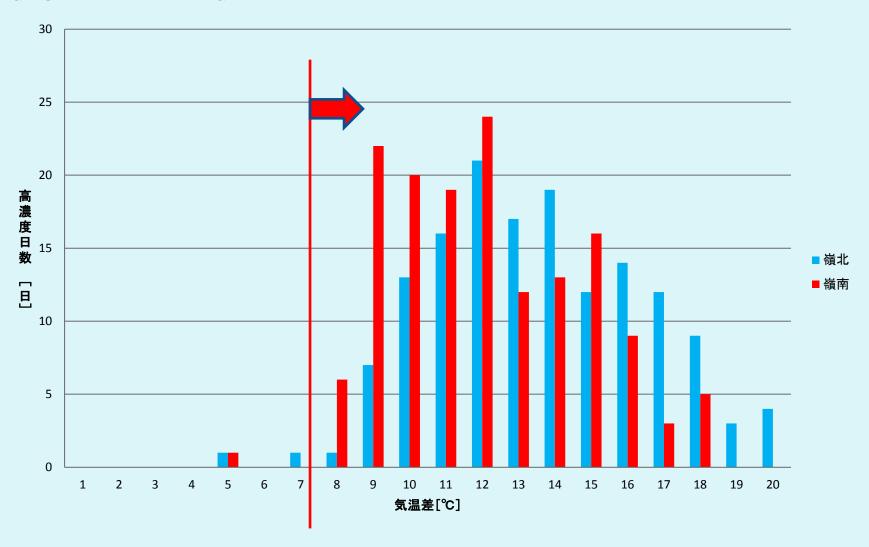
「ポテンシャルオゾン濃度(PO)」とは、 [PO] =  $[O_3]$  +  $[NO_2]$  -  $0.1 \times [NOx]$ 

 $NO + O_3 \rightarrow NO_2 + O_2$ の反応式により、光化学生成した $O_3$ がNOにより消失する。この消失分を $NO_2$ で補正している。

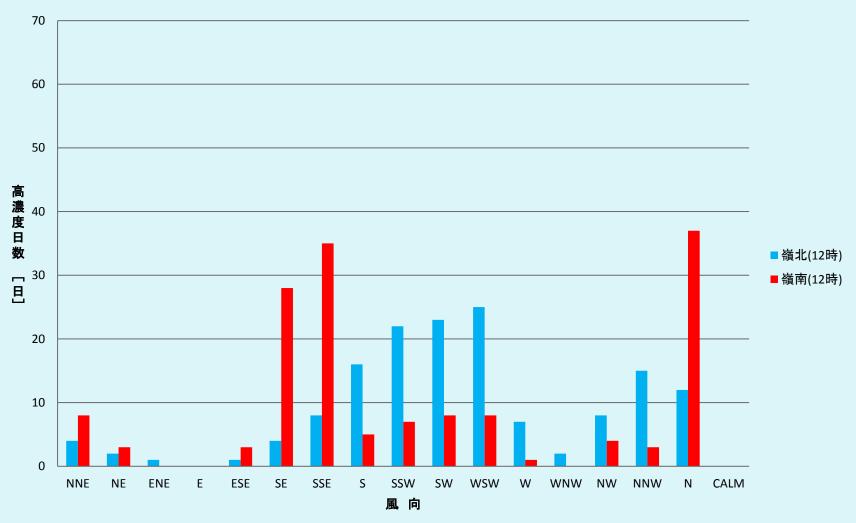
### 重回帰分析で評価

• 重回帰分析とは

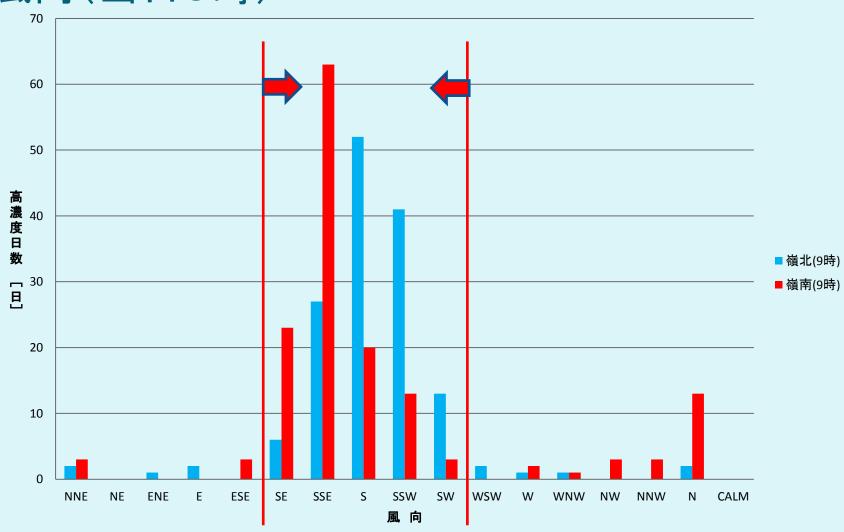
$$Y = b_1 X_1 + b_2 X_2 + b_3 X_3 + + c$$


(Y:目的変数 X:説明変数 b:偏回帰係数 c:定数)

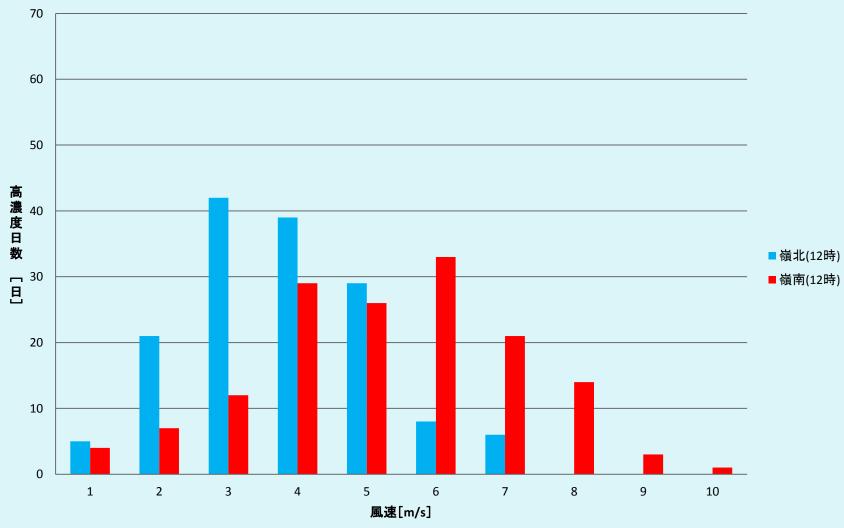
- (1) 重回帰分析は、1つの目的変数を複数の説明変数で予測しようというものです。
- (2) 相関や、各Xごとの影響度もわかります。


## 重回帰分析結果(例)(敦賀)

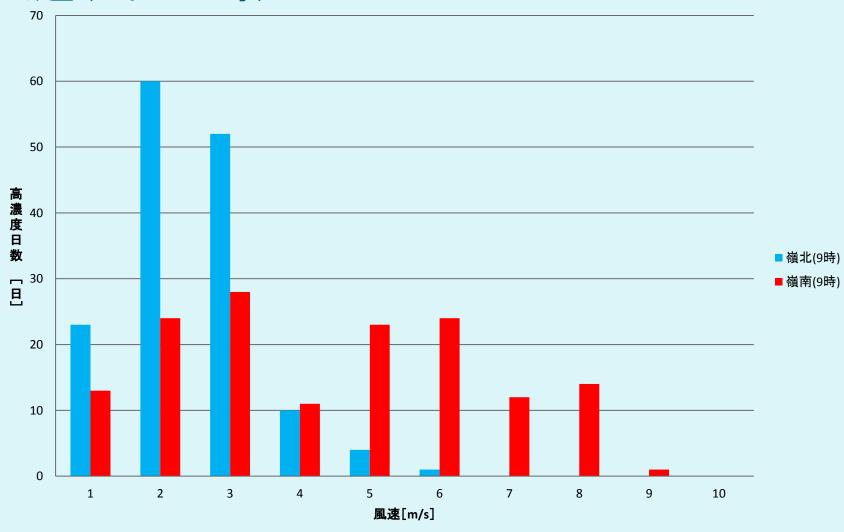
|                 |          | _                    | _                    |                      |                      |                     |                      |                     |
|-----------------|----------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|---------------------|
| 概要              |          |                      |                      |                      |                      |                     |                      |                     |
| 回帰統計            |          |                      |                      |                      |                      |                     |                      |                     |
| 重相関 R           | 0.704404 |                      |                      |                      |                      |                     |                      |                     |
| 重決定 R2          | 0.539467 | $R^2$                | ≧0.5 ታ               | ♪析の精                 | 度がやる                 | や良い                 |                      |                     |
| 補正 R2           | 0.487133 |                      |                      |                      |                      |                     |                      |                     |
| 票準誤差            | 11.84714 |                      |                      |                      |                      |                     |                      |                     |
| 見測数             | 148      |                      |                      |                      |                      |                     |                      |                     |
| 分散分析表           |          |                      |                      |                      |                      | <u></u>             | 直が小さ                 | いほど相                |
| ) HA ))         | 自由度      | 変動                   | 分散                   | <b>心された分</b>         | 有意 F                 | - "                 | =10 · 1 · C          | • 10.C              |
| 回帰              | 15       | 21702.23             | 1446.815             | 10.30828             |                      |                     |                      |                     |
| 浅差              | 132      | 18526.82             | 140.3547             |                      |                      | は田 たけん              | hi-0 05              | /=0/ =b :#          |
| 計               | 147      | 40229.05             |                      |                      |                      | 一恒彻出                | 31~0.05              | (5%水準               |
|                 |          |                      |                      |                      |                      |                     |                      |                     |
| C27020          | 係数       | 標準誤差                 | t                    | P−値                  | 下限 95%               | 上限 95%              | 下限 95.0%             | 上限 95.0%            |
| ]片              | 39.04883 | 11.96346             | 3.264007             | 0.001399             | 15.38392             | 62.71373            | 15.38392             | 62.71373            |
| (圧配置<br>有風)     | 1.725179 | 6.152011             | 0.280425             | 0.77959              | -10.4441             | 13.89447            | -10.4441             | 13.89447            |
| 5.圧配置<br>安定)    | 4.619201 | 6.419942             | 0.719508             | 0.4731               | -8.08008             | 17.31848            | -8.08008             | 17.31848            |
| (圧配置<br>大陸)     | 1.447667 | 6.190772             | 0.233843             | 0.815469             | -10.7983             | 13.69363            | -10.7983             | 13.69363            |
| 前日17時のPO濃度      | 0.24908  | 0.066461             | 3.747752             | 0.000266             | 0.117613             | 0.380546            | 0.117613             | 0.380546            |
| 最高気温と最低気温の差     | 1.774322 | 0.445209             | 3.985366             | 0.000111             | 0.893654             | 2.654991            | 0.893654             | 2.654991            |
| 前日21時の天候(雨)     | 2.251405 | 4.886682             | 0.460723             | 0.645756             | -7.41494             | 11.91775            | -7.41494             | 11.91775            |
| 前日21時の天候(曇)     | -3.69245 | 2.489485             | -1.48322             | 0.1404               | -8.61689             | 1.231999            | -8.61689             | 1.231999            |
| 時の天候(曇)         | 11.80929 | 11.43976             | 1.032303             | 0.303818             | -10.8197             | 34.43827            | -10.8197             | 34.43827            |
| 時の天候(晴)         | 12.25022 | 11.71402             | 1.045774             | 0.297577             | -10.9213             | 35.4217             | -10.9213             | 35.4217             |
| 5時の天候(曇)        | -7.47178 | 10.46234             | -0.71416             | 0.476389             | -28.1673             | 13.22376            | -28.1673             | 13.22376            |
| 時の天候(晴)         | -9.89915 | 10.60418             | -0.93351             | 0.352259             | -30.8753             | 11.07697            | -30.8753             | 11.07697            |
| ~12時(南北)        | -5.53152 | 2.899789             | -1.90756             | 0.058621             | -11.2676             | 0.204551            | -11.2676             | 0.204551            |
| 3 3 1 1 2 1 2 2 | 0.00102  |                      |                      |                      |                      |                     |                      |                     |
| 2~18時(南北)       | -1.22403 | 2.170616             | -0.56391             | 0.573772             | -5.51773             | 3.06966             | -5.51773             | 3.06966             |
|                 |          | 2.170616<br>5.720997 | -0.56391<br>0.256662 | 0.573772<br>0.797839 | -5.51773<br>-9.84833 | 3.06966<br>12.78506 | -5.51773<br>-9.84833 | 3.06966<br>12.78506 |


### 最高気温と最低気温の気温差

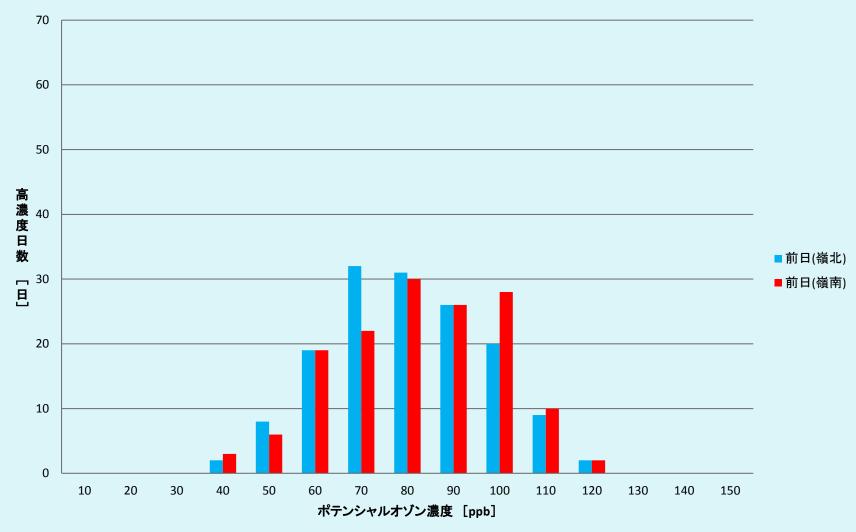



## 風向(当日12時)




## 風向(当日9時)




# 風速(当日12時)

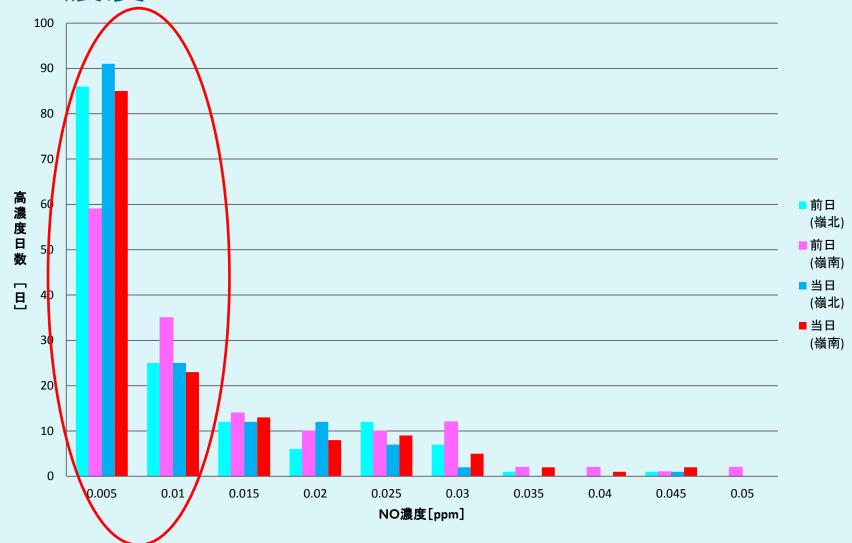


## 風速(当日9時)

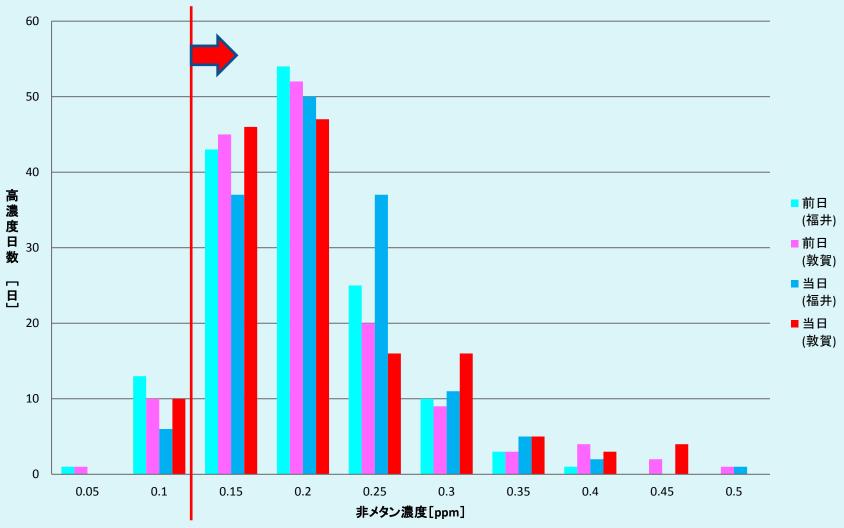


## ポテンシャルオゾン濃度(前日)



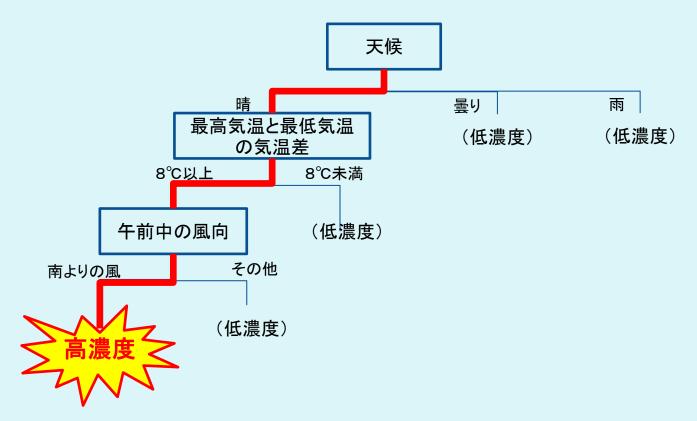

平成29年3月に、環境省が、「光化学オキシダント調査 検討報告書」を公表。

•「NO濃度」や「VOC濃度」が、オキシダント濃度に影響を 及ぼすとの知見を示した。




•「NO濃度」、「非メタン濃度」についても検討

### NO濃度




## 非メタン濃度



### 高濃度日となる条件

- ①当日の天候:「晴れ」
- ②当日の最高気温と最低気温の差 : 「8℃以上」
- ③当日の午前中の風向:「南よりの風」



### 予測モデルの検証

①過去の高濃度日で、予測してみた結果

• 嶺北 : 約8割

・嶺南 : 約7割 が高濃度日と予測できた

②平成29年度(4月~9月、3月)の「高濃度とならなかった日」で、 予測してみた結果

•嶺北 : 約4割

•嶺南 : 約2割 が高濃度日と予測

### 今年度の予定

- 月別の予測手法の検討
- NO濃度、非メタン濃度を、因子として考慮
- 予測モデルの試行、改良